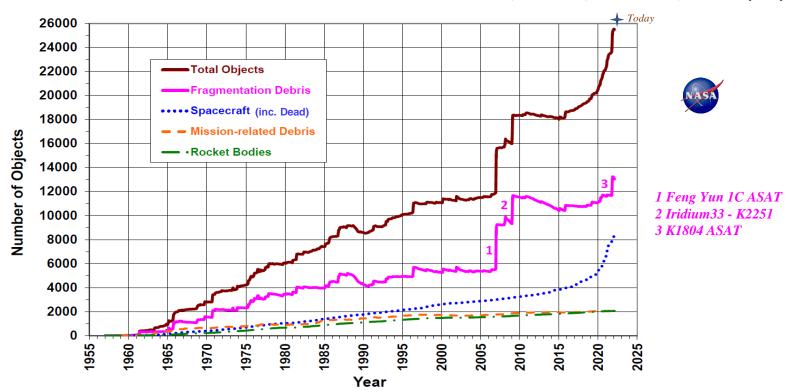


Space Debris in a nutshell Long Term Sustainability of Space Operations

Christophe Bonnal
CNES Strategy Directorate - EUCASS – Chairman of Technical Committee

French delegate to IADC, ISO and ECSS
Chairman of IAA Space Debris Commission and IAF Space Traffic Management Committee



(x7)

The number of cataloged objects has drastically increased these last years

- Number of debris has doubled in 15 years
- Number of active satellites: 994 Jan. 1st, 2012 6,957 Oct. 17, 2022
- Number of active satellites in Low Earth Orbit LEO: 469 Jan. 1st, 2012 5,846 Oct. 17, 2022 (x12)

NASA Space Debris Quarterly News - https://orbitaldebris.jsc.nasa.gov/quarterly-news/

Orbital population

TOTAL PAR

PAYS

54001

17755

24655

6196

1364

Sources of orbital objects are very unbalanced

Beware: all satellites, even dead: 6,957 active – 2,764 debris

DEBRIS

19766

4946

11868

1312

671

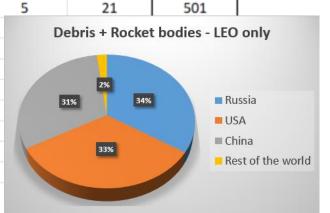
TOTAL

27835

7217

16848

1644

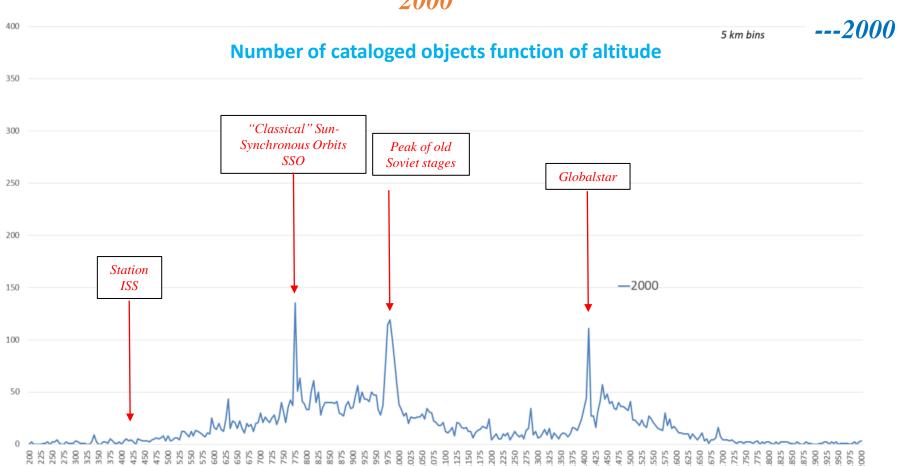

764

♥ USA + Russia + China =

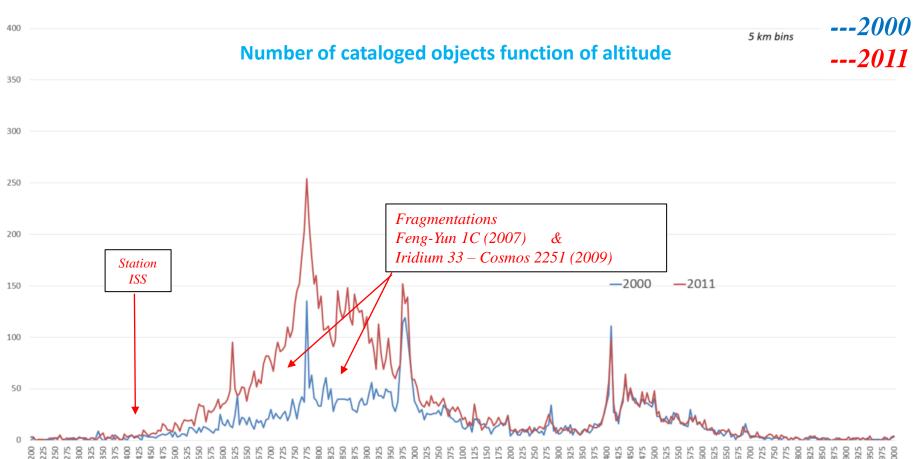
87% of the cataloged orbital population 95% of the cataloged orbital debris 97.5% of the debris in Low Earth Orbits

www.space-track.org

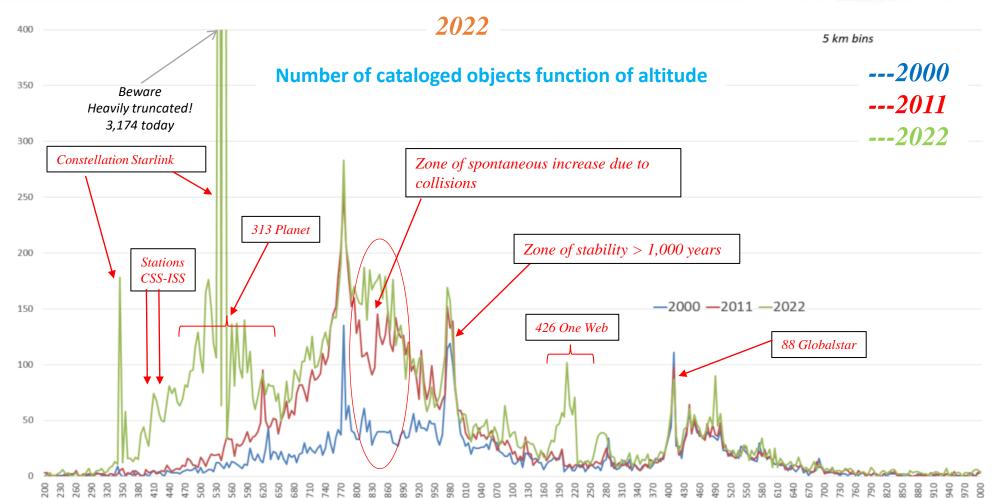
17.10.22		EN C	RENTRES				
Pays	SATELLITES	ETAGES	DEBRIS	TOTAL	SATELLITES	ETAGES	
Total	9721	2313	14132	16166	4004	4065	
USA	5335	734	4469	10538	1529	742	
CIS Russie	1568	1050	5189	7807	2082	2898	
Chine	592	210	3750 950	4552 87	106	226	
France	84	167	349	600	11	82	
Royaume Uni	479	1	0	480	16	0	
Japon	206	62	54	322	76	69	
Inde	107	40	71	218	14	25	
ESA	96	7	51	154	12	7	
Intelsat	91	0	1	92	1	0	
Allemagne	86	0	1	87	17	0	
Globalstar	84	0	1	85	0	0	
Canada	76	0	5	81	4	0	
Orb	58	0	14	72	1	0	
SES	58	0	0	58	1	0	



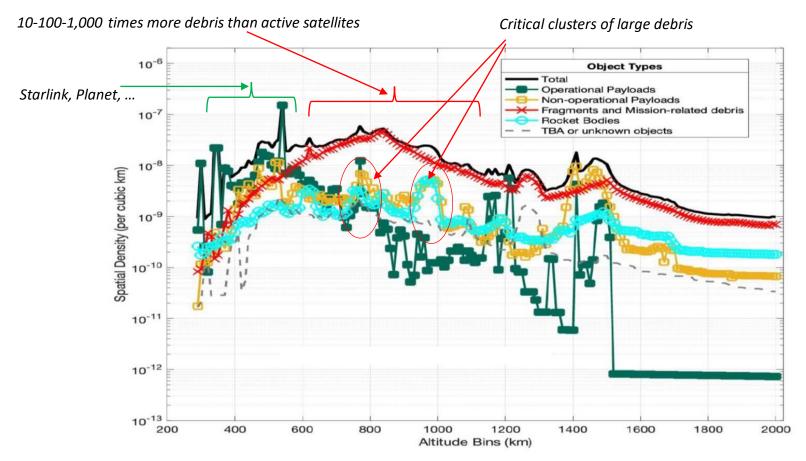
Time evolution of the orbital population



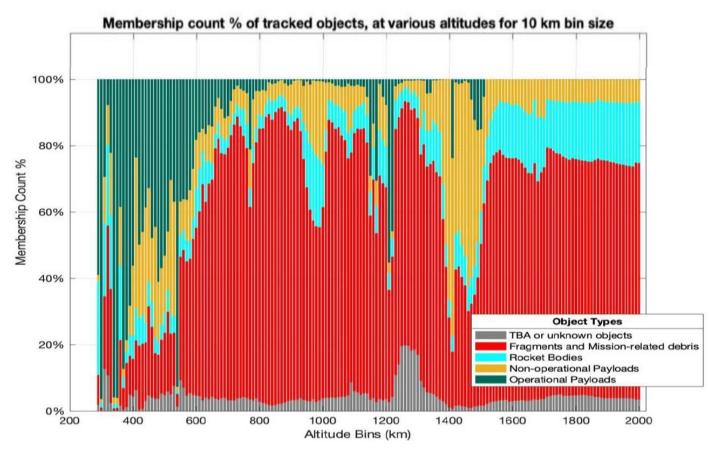
Time evolution of the orbital population


2011

Time evolution of the orbital population



Typology of cataloged objects in Low Earth Orbits



M. Stevenson, D. Mc Knight, H. Lewis, C. Kunstadter, R. Bhatia, AMOS conference 2021

M. Stevenson, D. Mc Knight, H. Lewis, C. Kunstadter, R. Bhatia, AMOS conference 2021

Distribution of large debris in Low Earth Orbits

Large debris in LEO are essentially grouped into clusters, by altitude-inclination bands

- 2 Zenit SL-16 stages (8,3 tons, 9 meters) pass less than 100 m from each other once per month
- 205 Cosmos-3M SL-8 stages in 3 major Clusters
- According to our models, a front collision of 2 SL-16 stages would generate +18,000 new cataloged debris

Cluster	Cluster Member	Mass (kg)	Number	Apogee (km)	Perigee (km)	Inclination (deg)
C775	SL8 RB	1,434	44	793	733	74
	SL8 PL	850	44	802	742	74
C850	SL16 RB	8,300	18	860	814	71
	SL16 PL	3,250	18	868	823	71
C975	SL8 RB	1,434	144	1020	935	83
	SL8 PL	800	142	1024	934	83
	Other PL	1500	15	997	905	64
C1500	SL8 RB	1,434	17	1660	1330	74
	SL14 RB	1,407	24	1530	1363	83
	SL14 PL	2477	24	1507	1381	83
TOTAL		~756k	490			27

SL-16 Zenit Upper stage Russian SpaceWeb Co.

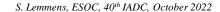
SL-8 Cosmos 3M Upper stage

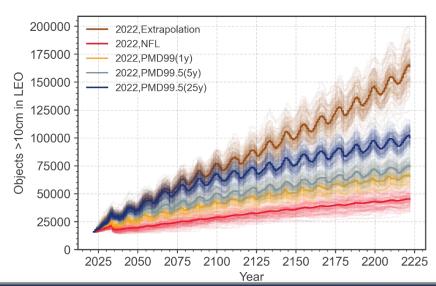
V. Trushlyakov

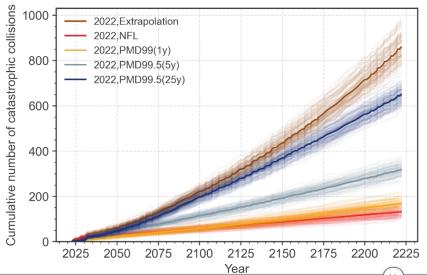
- Wait, simply applying the current mitigation rules ⇒ Not enough as no longer adapted today Diverging
 - Update the 25-year rule ⇒ Discussions ongoing to propose 5 years
 - Update the probability of success of End of Life operations ⇒ 90% Not enough Adopt 95 or 99%
 - Check effective compliance to current rules ⇒ Very poor level of compliance

☼ Even "No Future Launch" is diverging!

- **Avoid collisions implying maneuvering satellites** ⇒ "Space Traffic Coordination Management" STC STM
 - Fundamental, but not enough to guarantee Long Term Sustainability of Space Operations 60+% of collisions are between non-maneuvering orbital objects
- **Avoid collision between large debris** ⇒ "Just-in-time Collision Avoidance" JCA = Tactical operation
 - Numerous theoretical solutions are studied, but without market, i.e. impossible financing
 - Numerous associated problems, orbit accuracy, legal frame, insurances, duality ...
- **Retrieve the most dangerous debris** ⇒ "Active Debris Removal" ADR = Strategical operation
 - No technical problem a priori, but complex
 - Problem of the financing:
 - No positive business plan identified today
 - Several possibilities under study, mainly synergy with In-Orbit Servicing and Space-Tugs







Mitigation Guidelines, whatever they are, are no longer sufficient

- Evolution of objects larger than 10 cm over time (lower left)
- Cumulative number of catastrophic collisions (lower right)
- Considering orbital lifetime limitation and Probability of successful disposal
- Extreme cases:
 - Extrapolation = Business as Usual
 - NFL = No Future Launches
- Even the "No Future Launches" is diverging...
- ⇒ Need for Remediation = Active Debris Removal in some specific orbital zone

Priorities

Deal with today's situation

Consolidation of international regulations

- ① We shall share the current regulations at international level, based on the 21 LTS COPUOS
- 2 Consolidate our action at international level ECSS, IADC, ISO, COPUOS

Specificities of "New-Space": a very high reactivity is mandatory in order not to be always "one war late"

3 Very dynamic evolution of current regulations is compulsory: Current action at LOS level ongoing

Mitigate the consequences from yesterday

Kessler syndrome between 700 and 1,100 km altitude mainly linked to operations in the years 70-90 Necessity to retrieve largest and most dangerous debris, otherwise naturally diverging No significant action ongoing today at international level

4 It is fundamental to start as soon as possible Active Debris Removal operations

Prepare for tomorrow

Take all necessary actions to guarantee Long Term Sustainability, despite large constellations Drastic improvement of Collision Avoidance processes: STC – STM

⑤ It is fundamental to coordinate at international level to share the same rules (ECSS − ISO)

Improvement of the knowledge of orbital environment: priority to Space Surveillance & Tracking (SST)

© It is mandatory to improve tracking and cataloging of orbital objects

Preserve the "inhabitable" zone 380 – 430 km: density of objects there has increased by a factor 18 in 10 ans

1 It is important (but hard to imagine...) to define a preserved zone for inhabited space stations